1. For laminar flow through slit, fanning friction factor can be written as
a) $\frac{16}{\mathrm{~N}_{\mathrm{Re}, \text { gen }}^{\prime \prime}}$
b) $\frac{24}{\mathrm{~N}_{\mathrm{Re}, \text { gen }}^{\prime \prime}}$
c) $\frac{12}{\mathrm{~N}_{\mathrm{Re}, \text { gen }}^{\prime \prime}}$
d) $\frac{10}{\mathrm{~N}_{\mathrm{Re}, \text { gen }}^{\prime \prime}}$

ANSWER: b
2. Non-Newtonian fluid is pumped through a slit, where $K=50 \mathrm{~Pa} . \mathrm{s}^{\mathrm{n}}$ and $\mathrm{n}=0.5$, then find out y'?
a) $\quad 16.67$ Pa. s^{n}
b) $\quad 38.49$ Pa. s^{n}
c) 33.33 Pa. s^{n}
d) $23.63 \mathrm{~Pa} . \mathrm{s}^{\mathrm{n}}$

ANSWER: c
$y^{\prime \prime}=K^{\prime \prime} 3^{\mathrm{n}-1}=K\left(\frac{2 \mathrm{n}+1}{3 \mathrm{n}}\right)^{\mathrm{n}} 3^{\mathrm{n}-1}$
$y^{\prime \prime}=50 \times\left(\frac{2 \times 0.5+1}{3 \times 0.5}\right)^{0.5} \times 3^{0.5-1}$
$y^{\prime \prime}=33.33$ Pa.s ${ }^{n}$
3. If an object has the volume V_{p}, Diameter D_{p} and surface area S_{p}, then the sphericity of that object can be given as
a) $\frac{6 * V p}{D p * S p}$
b) $\frac{6 * \mathrm{Dp}}{\mathrm{Vp} * \mathrm{Sp}}$
c) $\frac{6 * S p}{V p * D p}$
d) None of the above

ANSWER: a
4. If v^{\prime} is the velocity based on empty cross section of the bed and ε is the void ratio, then actual velocity through void space v will be given as
a) $\quad v=v^{\prime} \varepsilon$
b) $\quad v=v^{\prime} / \varepsilon$
c) $\quad v=v^{\prime}(1-\varepsilon)$
d) $\quad v=v^{\prime} /(1-\varepsilon)$

ANSWER: b

5. Burke-Plummer equation is valid for
a) $\quad \mathrm{N}_{\mathrm{Re}}<10$
b) $\quad \mathrm{N}_{\mathrm{Re}}>1000$
c) $10<\mathrm{N}_{\mathrm{Re}}<1000$
d) None of the above

ANSWER: b
6. Blake - Kozeny equation is valid for
a) $\quad \mathrm{N}_{\mathrm{Re}}<10$
b) $\quad \mathrm{N}_{\mathrm{Re}}>1000$
c) $10<\mathrm{N}_{\mathrm{Re}}<1000$
d) None of the above

ANSWER: a
7. If a is the total surface area available per unit volume of bed, then Specific Surface Area of Particle a_{v} can be given as
a) $\quad \mathrm{a}(1-\varepsilon)$
b) $\quad \mathrm{a} /(1-\varepsilon)$
c) $\mathrm{a} \varepsilon$
d) $\quad \mathrm{a} / \varepsilon$

ANSWER: b
$\because \mathrm{a}=\mathrm{a}_{\mathrm{v}}(1-\varepsilon)$
$\therefore \mathrm{a}_{\mathrm{v}}=\mathrm{a} /(1-\varepsilon)$
8. The unit of specific surface area of particle is
a) m
b) m^{-1}
c) $\mathrm{m}^{2} / \mathrm{m}^{3}$
d) Both (b) and (c)

ANSWER: d
Specific Surface Area of Particle $=\frac{\text { Surface area of particle }}{\text { Volume of particle }}$
$=\frac{\mathrm{m}^{2}}{\mathrm{~m}^{3}}=\mathrm{m}^{-1}$
9. When diameter of particle is less than 1 mm , then it is called as
a) sieve analysis diameter
b) Nominal diameter
c) geometric mean diameter
d) Both (a) and (b)

ANSWER: d
10. Ergun equation is the sum of
a) Hagen-Poiseulle and Burke-Plummer equation
b) Hagen-Poiseulle and Blake - Kozeny equation
c) Blake - Kozeny equation and Burke-Plummer equation
d) None of the above

ANSWER: c

