- 1. For laminar flow through slit, fanning friction factor can be written as
- a) $\frac{16}{N_{\text{Re,gen}}^{\prime\prime}}$
- b) $\frac{24}{N_{\text{Re,gen}}''}$ c) $\frac{12}{\pi''}$

d)
$$\frac{N_{\text{Re,gen}}'}{N''}$$

N'Re,gen

ANSWER: b

- 2. Non-Newtonian fluid is pumped through a slit, where K= 50 Pa.sⁿ and n=0.5, then find out y''?
- a) 16.67 Pa.sⁿ
- b) 38.49 Pa.s^{n}
- c) 33.33 Pa.sⁿ
- d) 23.63 Pa.sⁿ

ANSWER: c

y'' = K''
$$3^{n-1} = K \left(\frac{2n+1}{3n}\right)^n 3^{n-1}$$

y'' = 50 × $\left(\frac{2 \times 0.5 + 1}{3 \times 0.5}\right)^{0.5} \times 3^{0.5-1}$
y'' = 33.33 Pa.sⁿ

3. If an object has the volume V_p, Diameter D_p and surface area S_p, then the sphericity of that object can be given as

a)
$$\frac{6*Vp}{Dp*Sp}$$

b)
$$\frac{6*Dp}{Vp*Sp}$$

c)
$$\frac{6*Sp}{Vp*Dp}$$

d) None of the above

ANSWER: a

4. If v' is the velocity based on empty cross section of the bed and ε is the void ratio, then actual velocity through void space v will be given as

a)
$$v = v' \epsilon$$

b) $v = v'/\epsilon$

- c) $v=v'(1-\varepsilon)$
- d) $v = v'/(1-\varepsilon)$

ANSWER: b

- 5. Burke-Plummer equation is valid for
- a) N_{Re}<10
- b) N_{Re}>1000
- c) $10 < N_{Re} < 1000$
- d) None of the above

ANSWER: b

- 6. Blake Kozeny equation is valid for
- a) N_{Re}<10
- b) N_{Re}>1000
- c) $10 < N_{Re} < 1000$
- d) None of the above

ANSWER: a

- 7. If a is the total surface area available per unit volume of bed, then Specific Surface Area of Particle a_v can be given as
- a) a(1-ε)
- b) a/(1-ε)
- c) ae
- d) a/e

ANSWER: b

 \therefore a = a_v(1- ε)

 $\therefore a_v = a/(1-\varepsilon)$

- 8. The unit of specific surface area of particle is
- a) m
- b) m⁻¹
- c) m^2/m^3
- d) Both (b) and (c)

ANSWER: d

Specific Surface Area of Particle = $\frac{\text{Surface area of particle}}{\text{Volume of particle}}$

$$=\frac{\mathrm{m}^2}{\mathrm{m}^3}=\mathrm{m}^{-1}$$

- 9. When diameter of particle is less than 1 mm, then it is called as
- a) sieve analysis diameter
- b) Nominal diameter
- c) geometric mean diameter
- d) Both (a) and (b)

ANSWER: d

- 10. Ergun equation is the sum of
- a) Hagen-Poiseulle and Burke-Plummer equation
- b) Hagen-Poiseulle and Blake Kozeny equation
- c) Blake Kozeny equation and Burke-Plummer equation
- d) None of the above

ANSWER: c